National Research University - Higher School of
Economics

Investment Project Management

Lecture 6. «Modern models of project assessment»

Accounting Profitability Ratios

Economic and financial theories created numerous accounting profitability ratios. The key ones:

Accounting Profitability Ratios		YO		12	Y3	Y4	Y5	tal for period
Gross Profit		0	6750	2769	11836	14584	17581	53520
Operating Income	01	0	4525	-1 256	7055	9791	12706	32821
Earnings Before Interest and After Taxes (EBIAT)	EBIAT	0	3620	-1005	5644	7832	10165	26257
Earnings Before Interest and Taxes (EBIT)	EBIT	0	4525	-1 256	7055	9791	12706	32821
Earnings Before Interest, Taxes, Depreciation and Amortization (EBITDA)	EBITDA	0	4750	-231	8656	11245	14092	38512
Earnings Before Interest, Taxes, Depreciation, Amortization, Rent (EBITDAR)	EBITDAR	0	5050	219	9133	11746	14615	40763
Earnings Before Interest, Taxes, Depreciation, Amortization, Rent and Management Fees (EBITDARM)	EBITDARM	0	5450	819	9769	12414	15313	43765
Earnings Before Taxes (EBT)	EBT	0	3825	-2 096	6075	8671	11446	27921
Net profit = Net income after tax	Net income	0	3060	-2 096	4860	6936	9157	21918
NOPLAT (NOPAT) - Net Operating Profit Less Adjusted Taxes, Net Operating Profit After Tax	NOPLAT	0	3620	-1 005	5644	7832	10165	26257
NOPLAT (NOPAT) - Net Operating Profit Less Adjusted Taxes, Net Operàting Profit After Tax	NOPAT	0	3620	-1 005	5644	7832	10165	26257
OIBDA (Operating Income Before Depreciation and EBITDA)	OIBDA	0	4750	-231	8656	11245	14092	38512
Dividend Yield (Non-Market)	Yield		0,00\%	6,38\%	0,00\%	10,13\%	14,45\%	10,32\%

Accounting Profitability Ratios

Economic Profitability Ratios		Y0	Y1	Y2	Y3	Y4	Y5	Average for the period
WACC (Weighted Average Cost of Capital)	WACC		25,00\%	17,31\%	18,59\%	17,62\%	16,67\%	19,04\%
ROA (Return on Assets)	ROA		29,08\%	-15,81\%	26,06\%	26,93\%	26,09\%	27,04\%
ROAA (Return on Average Assets)	ROAA		19,80\%	-10,93\%	19,02\%	20,61\%	20,82\%	20,06\%
ROACE (Return on Average Capital Employed)	ROACE		44,98\%	-9,69\%	39,58\%	39,54\%	37,46\%	40,39\%
ROAE (Return on Average Equity)	ROAE		30,42\%	-16,17\%	27,27\%	28,01\%	27,00\%	28,17\%
ROC (Return on Capital)	ROC		27,26\%	-5,80\%	29,68\%	40,55\%	51,50\%	37,25\%
ROCE (Return on Capital Employed)	ROCE		44,98\%	-9,69\%	39,58\%	39,54\%	37,46\%	40,39\%
ROD (Return on Debt)	ROD		61,20\%	-34,93\%	69,43\%	86,71\%	101,74\%	79,77\%
ROE (Return on Equity)	ROE		30,42\%	-16,17\%	27,27\%	28,01\%	27,00\%	28,17\%
ROE (Return on Equity) Du Pont formula	ROE Du Pont		30,42\%	-16,17\%	27,27\%	28,01\%	27,00\%	28,17\%
ROI (Return on Investment)	ROI		43,71\%	-17,47\%	40,50\%	57,80\%	76,31\%	54,58\%
ROIC (Return on Invested Capital)	ROIC		51,71\%	-8,37\%	47,03\%	65,27\%	84,71\%	62,18\%
ROMI (Return on Marketing Investments)	ROMI		No entries in the Case					
RONA (Return on Net Assets)	RONA		36,65\%	-18,40\%	40,14\%	60,71\%	84,32\%	55,46\%
ROR (Return on Revenue) :	ROR		20,40\%	-33,27\%	17,72\%	20,26\%	22,05\%	20,11\%
RORC (Return on Research Capital)	RORC		No entries in the Case					

Accounting Profitability Ratios

Economic Profitability Ratios		Y0	Y1	Y2	Y3	Y4	Y5	Average for the period
RORE (Return on Retained Earnings)	RORE		100,00\%	-9,49\%	104,09\%	155,42\%	198,79\%	139,58\%
ROS (Return on sales, Operating margin)	ROS		30,17\%	-19,94\%	25,72\%	28,60\%	30,59\%	28,77\%
Profit Volume Ratio	Profit Volume		0,00\%	12,14\%	0,00\%	3,55\%	4,17\%	6,62\%
Net profit margin	Net Profit margin		20,40\%	-33,27\%	17,72\%	20,26\%	22,05\%	20,11\%
Investments Turnover	Investments Turnover		142,56\%	47,52\%	147,11\%	132,91\%	118,33\%	117,69\%
Gross profit margin (Gross Margin)	Gross Margin (GM)		45,00\%	43,95\%	43,15\%	42,60\%	42,33\%	43,41\%
CROCI (Cash Return on Capital Invested)	CROCI		67,86\%	-1,93\%	72,13\%	93,71\%	117,43\%	87,78\%
Operating Expense Ratio (OER)	OER		5000,00\%	1400,00\%	5750,79\%	6835,22\%	7936,27\%	5384,45\%
Capital Employed	Capital Employed		10060	12964	17824	24761	33918	
Cash Flow Return on Investment (Non-market)	CFROI		17,01\%	-1,08\%	23,25\%	30,78\%	28,66\%	24,92\%
Interest Tax Shield	Tax Shield		140,00	168,00	196,00	224,00	252,00	980

Accounting Profitability Ratios

Liquidity Ratios		Y0	Y1	Y2	Y3	Y4	Y5	Average for the period
Free Cash Flow to the Firm	FCFF		271	-4 049	4928	8517	10730	6111
Free Cash Flow to Equity	FCFE		-289	-5 140	4144	7621	9722	7162
Sales to Receivables	Receivables Turnover Ratio cost OJ		10,51	10,41	10,34	10,29	10,27	10,37
Cost of Sales to Payables	Sales to の-n....LI_		17,88	12,06	18,97	19,71	20,23	17,77
Days payables Ratio	Days payables Ratio		20,42	30,27	19,24	18,52	18,04	21,30
Days receivables Ratio	Days receivables Ratio		34,73	35,05	35,29	35,46	35,54	35,21
Quick Ratio (Acid Test)	Acid Test		6,80	7,43	10,18	16,71	22,89	12,80
Cash to Total Assets	Cash to Total Assets		0,16	0,12	0,31	0,52	0,66	0,35
Cash Turnover	Cash Turnover		9,53	9,80	9,27	9,18	9,13	9,38
Current Ratio	Current Ratio		8,12	8,56	11,55	18,11	24,32	14,13
Fixed to Worth Ratio	Fixed to Worth Ratio		0,67	0,75	0,48	0,29	0,18	0,48
Non-current assets to Net Worth	Non-current assets to Net Worth		0,67	0,83	0,51	0,31	0,19	0,50
Earnings Retention Ratio (Non-Market, if paid)	Earnings Retention Ratio		100,00\%	136,50\%	100,00\%	82,48\%	81,06\%	100,01\%
Free Cash Flow to Operating Cash	FCF to Operating Cash		11,24\%	-578,38\%	96,17\%	97,44\%	97,71\%	75,64\%

Accounting Profitability Ratios

Debt Ratios		YO	Y1	Y2	Y 3	Y4	Y5	Average for the period
Debt Ratio	Debt Ratio		46,87\%	44,64\%	37,03\%	30,63\%	25,29\%	36,89\%
Debt to Equity Ratio	Debt to Equity Ratio		49,02\%	45,65\%	38,73\%	31,87\%	26,17\%	38,29\%
Interest Coverage	Interest Coverage		6,46	-1,50	7,20	8,74	10,08	8,12
Net Interest Margin	Net Interest Margin		35,74\%	-9,47\%	31,32\%	31,28\%	29,68\%	32,00\%
Cash Flow Coverage Ratio	CF coverage		48,89\%	11,83\%	74,21\%	110,78\%	123,72\%	73,89\%

Accounting Profitability Ratios

Efficiency Ratios		Y0	Y1.	Y2	Y3	Y4	Y5	Average for the period
Accounts Receivable Turnover	Accounts Receivable Turnover		4,06	4,06	4,06	4,06	4,06	4,06
Annual Inventory Turnover	Annual Inventory Turnover		30,42	30,42	30,42	30,42	30,42	30,42
Collection Period	Collection Period		90,00	90,00	90,00	90,00	90,00	90,00
Inventory Holding Period	Inventory Holding Period		12,00	12,00	12,00	12,00	12,00	12,00
Inventory to Assets Ratio	Inventory to Assets Ratio		2,58\%	0,88\%	2,75\%	2,51\%	2,24\%	2,19\%
Overhead ratio	Overhead ratio		2,27	-5,20	2,66	2,35	2,16	2,36
Revenue per Employee	Revenue per Employee		100	32	110	114	119	94,80

DCF: Required Rate of Return

All DCF Project valuation models use the Required Rate of Return which is composed of (according to CAPM (Capital Asset Pricing Model)): Risk-free rate, Beta (as he sensitivity of the expected excess asset returns to the expected excess market returns) and Market Return rate.

DCF: Required Rate of Return

Due to the reason that CAPM properly works in the developed stock markets and looks not so definite for the emerging markets, specific assets and various market anomalies very often it's necessary to prove the Required rate of return chosen for the Asset/Project using additionally some other models.

DCF: Required Rate of Return

Global Company (XXX) is planning to enter into a new line of business using equity increase.
Benchmark Company (ZZZ) is a firm in mentioned segment of industry. XXX has a D / E of $1 / 3, Z Z Z$ has a D / E of $2 / 3$. After creating of new business division XXX D/E remains the same $=1 / 3$ (or $1 / 4$ of Debt $+3 / 4$ of Equity).
Borrowing rate for XXX is 10 \%
Borrowing rate for ZZZ is 12%
Given: Market risk premium $=8.5 \%, R_{f}=8 \%, T_{c}=40 \%$
What is the appropriate discount rate for XXX to use for this takeover?
Step 1. Determining ZZZ's cost of Equity Capital (r_{E})

$$
\begin{gathered}
Z Z Z r_{E}=R_{f}+\beta \times\left(\boldsymbol{R}_{M}-R_{f}\right)=8 \%+1,5 \times \\
8,5 \%=20,75 \%
\end{gathered}
$$

DCF: Required Rate of Return

Step 2. Determining ZZZ's Hypothetical All-
Equity Cost of Capital. (r_{0})

$$
\begin{gathered}
r_{E}=r_{0}+\frac{D}{E} \times(1-T) \times\left(r_{0}-r_{D}\right) \\
20,75 \%=r_{0}+2 / 3 \times(0,6) \times\left(r_{0}-12 \%\right) \\
r_{0}=18,25 \%
\end{gathered}
$$

Step 3. Determining r_{E} for $X X X$'s assuming that the business risk of $X X X$ and $Z Z Z$ is the same
$X X X r_{E}=18,25 \%+\frac{1}{3} \times(0,6) \times(18,25 \%-10 \%)=19,9 \%$
NOTE : $r_{s(x X x)}<r_{s(z z z)} \quad$ because $D / E_{(x X x)}<D_{(z z z)}$

DCF: Required Rate of Return

Step 4. Determining $\mathrm{r}_{\text {wacc }}$ for XXX's united company.

$$
\begin{gathered}
r_{W A C C}=\frac{E}{D+E} \times r_{E}+\frac{D}{D+E} \times r_{D} \times(1-T) \\
r_{W A C C}=\frac{3}{4} \times 19,9 \%+\frac{1}{4} \times 10 \% \times(1-40 \%)=16,425 \%
\end{gathered}
$$

We calculate $D+E$ as 4 according to the initial proportion $D / E=1 / 3$.

DCF 3 methods: Adjusted Present Value

Adjusted Present Value (APV) is the net present value calculated with all effects sourced by Project debt financing. In general, it means that APV assumes that the project is financed only by equity.

> Adjusted Present Value $($ APV $)=$ Unlevered NPV + NPVF (NPV of Financing effects)

There are following main side effects of financing:
The Tax Shield to Debt
The Costs of Issuing New Securities
The Costs of Financial Distress

DCF 3 methods: Adjusted Present Value

In order to calculate APV it's necessary to split the cash flows to 2 parts: Unlevered cash flows discounted by ROI (Return on Investments) and the Debt effects discounted by Cost of Debt rate:

Net Operating Profit After Tax (NOPAT)
 + Non-cash items in EBIT

- Working Capital changes
- Capital Expenditures and Other Operating Investments
=Free Cash Flows (FCF)
Unlevered PV = FCF discounted by ROI.
+ Debt effects (Tax shield - New Issuance costs - Cost of distress)
Levered PV = FCF discounted by Cost of Debt. APV = Unlevered PV + Levered PV

DCF 3 methods: Adjusted Present Value

Consider Project where the timing and size of the incremental after-tax cash flows for an all-equity firm are:

The unlevered cost of equity (Required ROI) is $r_{0}=\mathbf{1 0 \%}$:

Unlevered NPV	-500	59	103	143	171	$\mathbf{- 2 4 , 1 0}$

The project would be rejected by an all-equity firm: $N P V<0$.

DCF 3 methods: Adjusted Present Value

Now, imagine that the firm finances the project with $\$ 300$ of debt at $r_{D}=8 \%$. Tax rate is 40%, so they have an interest Tax Shield worth $T_{C} B r_{B}=.40 \times \$ 300 \times .08=\$ 9.60$ each year. The APV is calculated:

$$
\begin{gathered}
A P V=N P V+N P V F \\
A P V=-24.10+\sum_{t=1}^{4} \frac{9.60}{(1.08)^{t}}=-24.10+31.80=+7.70
\end{gathered}
$$

The project should be accepted with debt because NPV >0. The same result will be achieved if calculate the full NPV of the loan:
Loan NPV discounted by Cost of Loan = Tax Shield discounted by Cost of Loan.

DCF 3 methods: Flow to Equity Approach

Flow to Equity Approach (FTE) represents a discount of the project cash flow to the equity holders of the levered firm at the cost of levered equity capital, $\boldsymbol{r}_{\mathbf{E}}$.

There are three steps in the FTE Approach:
Step One: Calculate the levered cash flows
Step Two: Calculate r_{E}.
Step Three: Valuation of the levered cash flows at r_{E}.

DCF 3 methods: Flow to Equity Approach

Flow to Equity Approach (FTE) represents a discount of

Since the firm is using $\$ 300$ of debt, the equity holders only have to come up with $\$ 200$ of the initial $\$ 500$.
Thus, $C F_{0}=-\$ 200$
Each period, the equity holders must pay interest expense. The after-tax cost of the interest is $B \times r_{B} \times\left(1-T_{C}\right)=\$ 300 \times .08 \times(1-.40)=\$ 14.40$

DCF 3 methods: Flow to Equity Approach

$$
r_{E}=r_{0}+\frac{D}{E} \times(1-T) \times\left(r_{0}-r_{D}\right)
$$

To calculate the debt-to-equity ratio, D / E, start with the debt to value ratio. PV of the project cash flows (including Tax Shield) since period 1 is: \$ 507.70.

$$
P V=\frac{65}{(1.10)^{1}}+\frac{125}{(1.10)^{2}}+\frac{190}{(1.10)^{3}}+\frac{250}{(1.10)^{4}}+\sum_{t=1}^{4} \frac{14.40}{(1+0.8)^{t}}
$$

$D=\$ 300 ; E=\$ 507.70-\$ 300=\$ 207.70$.

$$
r_{E}=10 \%+\frac{300}{207.70} \times(1-40 \%) \times(10 \%-8 \%)=11,73 \%
$$

DCF 3 methods: Flow to Equity Approach

Discounting the cash flows to equity holders at $r_{E}=11.73 \%$

$$
\begin{gathered}
\stackrel{y}{c}_{-\$ 200}^{\$} \\
0
\end{gathered}
$$

DCF 3 methods: WACC

The Weighted Average Cost of Capital (WACC) is the rate that a company is expected to pay on average to all its security and debt holders to finance its assets. The WACC is the minimum return that a company must earn on an existing asset base to satisfy its creditors, owners, and other providers of capital, or they will invest elsewhere.

$$
\begin{gathered}
r_{W A C C}=\frac{E}{D+E} \times \boldsymbol{r}_{E}+\frac{D}{D+E} \times \boldsymbol{r}_{\boldsymbol{D}} \times(\mathbf{1}-\boldsymbol{T}) \\
r_{w a c c}=\frac{200}{300} \times 11.73 \%+\frac{300}{200} \times 8 \% \times(1-40 \%)=7,57 \% \\
P V_{r_{W A C C}}=\$ 7,87
\end{gathered}
$$

DCF 3 methods: APV, WACC, Flow to Equity

All three methods: APV, WACC and Flow to equity are focused at the same task: valuation in the Presence of the Project/Entity with debt financing.

Guidelines:

We use WACC or FTE if the firm's target debt-to-value ratio applies to the project over the life of the project.

We use the APV if the project's level of debt is known over the life of the project.

In the real world, the WACC is the most widely used approach by far.

DCF 3 methods: APV, WACC, Flow to Equity

	APV WACC	FTE	
Initial Investment	All All	Equity Portion	
Cash Flows	UnleveredCF		LeveredCF
Discount Rates	$r_{0} \quad r_{\text {WACC }}$	r_{E}	
PV of financing effects	Yes No	No	

Which approach is best?
-We use APV when the level of debt is constant
-We use WACC and FTE when the debt ratio is constant

DCF 3 methods: back to APV

Let's calculate the APV for certain project:
A Company is considering a $\$ 5$ million expansion of their existing business.

- The initial expense will be depreciated straight-line over 5 years to zero salvage value
- The pretax salvage value in year 5 will be $\$ 500,000$.
- The project will generate pretax earnings of $\$ 1,500,000$ per year, and not change the risk level of the firm.
- The firm can obtain a five-year $\$ 3,000,000$ loan at 12.5% to partially finance the project.
- If the project were financed with all equity, the cost of capital would be 18%. The corporate tax rate is 34%, and the risk-free rate is 4%.
- The project will require a $\$ 100,000$ investment in net working capital.

DCF 3 methods: back to APV

In considered project we should extract the Tax benefits generated by the Depreciation and Interest.

$$
\begin{gathered}
\text { APV }=-0 \text { utlay }+P V_{\text {Unlevered }} \\
+P V_{\text {Depreciation Tax shield }}+P V_{\text {Interest Tax shield }}
\end{gathered}
$$

The cost of the project is not equal to Outlay amount. We must include the round trip in and out of Net Working Capital (NWC) and the after-tax Salvage value. NWC is riskless, so we discount it at \mathbf{r}_{f} (Cost of Financing). Salvage value should have the same risk as the rest of the firm's assets, so we use r_{0}.

$$
\text { Outlay }=-\$ 5.1 m+\frac{100000}{(1+12,5 \%)^{5}}+\frac{500000 \times(1-34 \%)}{(1+18 \%)^{5}}=-\$ 4,9 \mathrm{~m}
$$

DCF 3 methods: back to APV

Let's calculate all entries:

$$
\begin{aligned}
& P V_{\text {unlevered }}=\sum_{t-1}^{5} \frac{U C F_{t}}{\left(1+r_{0}\right)^{t}}=\sum_{t+n}^{5} \frac{\$ 1,5 m \times(1-34 \%)}{(1,18)^{t}}=\$ 3,096 \mathrm{~m} \\
& P V_{\text {Depreciation Shield }}=\sum_{t=1}^{5} \frac{D \times T}{\left(1+r_{f}\right)^{t}}=\sum_{t=1}^{5} \frac{\$ 1 m \times 34 \%}{(1,04)^{t}}=\$ 1,513 \mathrm{~m} \\
& P V_{\text {Interest Tax Shield }}=\sum_{t=1}^{5} \frac{T \times r_{D} \times \$ 3 m}{\left(1+r_{D}\right)^{t}}=\sum_{t=1}^{5} \frac{34 \% \times 0,125 \times \$ 3 \mathrm{~m}}{(1,125)^{t}}=\$ 0,454 \mathrm{~m} \\
& A P V=-\$ 4,9 \mathrm{~m}+\$ 3,096+\$ 1,513+\$ 0,454=\$ 0,190
\end{aligned}
$$

Since the project has a positive APV, it looks like a go.

Other valuation methods: EVA or EP

Economic Value Added (EVA, trademark of Stern-Stewart) or Economic Profit (EP, trademark of McKinsey \& Co.) represents is the profit earned by the firm less the cost of financing the firm's capital.

$$
\begin{gathered}
\boldsymbol{E V A}=\text { NOPAT }-\$ \boldsymbol{W} A C C \\
N O P A T=E B I T \times(1-\text { Tax rate }) \\
\$ W A C C=W A C C \times \text { Capital }
\end{gathered}
$$

or $E P=($ ROI $-W A C C) \times$ Invested Capital
EVA allows to create a link between the current earnings and assets and measures the actual profitability more precisely than Accounting ratios. But it doesn't consider any future cash flows: extra-maximizing of EVA in current period might cause the decrease of the profitability in upcoming periods.

Other valuation methods: EVA or EP

NPV calculated on the cash flows of Economic Value Added (EVA) or is called MVA (Market Value Added):

$$
N P V_{E V A}=M V A=\sum_{t=1}^{\infty} \frac{E V A_{t}}{(1+W A C C)^{t}}
$$

Normally, if we calculate $N P V_{E V A}$ by the rate $=1+$ WACC we find the same result as conventional calculation of company's valuation based on NPV.

Accounting Profitability Ratios

EVA-based Ratios		YO	Y1	Y2	Y3	Y4	Y5	Average for the period
EVA (Economic Value Added)	EVA		2370	-3 070	2313	4501	6849	12963
EVA Margin (Economic Value Added on Sales)	EVA Margin		15,80\%	-48,74\%	8,43\%	13,15\%	16,49\%	13,47\%
EVA Momentum growth rate	EVA Momentum			-36,27\%	85,45\%	7,98\%	6,86\%	
EROE (Economic Return on Equity)	eroe		33,86\%	-25,59\%	19,27\%	37,51\%	57,08\%	36,93\%
EROA (Economic Return on Assets)	EROA		22,53\%	-23,16\%	12,40\%	17,47\%	19,51\%	17,98\%
MVA (Market Value Added)	MVA		No entries in the Case					

Other valuation methods: Residual Income

Residual Income Valuation assesses the part of Shareholders' Equity not reflected in Equity Book Value. Residual Income = Net Income - Equity Charge (Equity Charge = Equity Capital x Cost of Equity) or $\boldsymbol{P V} \boldsymbol{V}_{\mathbf{0}}=$ BookValue $_{\mathbf{0}}+\sum_{\boldsymbol{t = 1}}^{\infty} \frac{R \boldsymbol{I}_{t}}{\left(\mathbf{1}+\boldsymbol{r}_{\varepsilon}\right)^{t}}$ or adding Net Terminal Value:

$$
P V_{0}=\text { BookValue }_{0}+\sum_{t=1}^{m-1} \frac{R I_{t}}{\left(1+r_{E}\right)^{t}}+\frac{\frac{R I_{m}}{r_{E}-g}}{\left(1+r_{E}\right)^{m-1}}
$$

Other valuation methods: Claims Valuation

Claim Valuations Approach gives a final Present Value of shareholders' equity after the repayments of all debt obligations.

All principal and interest repayments are discounted by r_{D} (Cost of Debt rate, Levered Capital rate) and all future cash flows in favour of shareholders are discounted by r_{E} (Unlevered Capital rate). The difference between 2 amounts represents current Company's NPV.

Other valuation methods: Sustainable Growth Rate

Other valuation methods: Sustainable Growth Rate

Revenue growth and profitability

Revenue growth (CAGR, in \%, segments)
ROS = EBT divided by sales, ROA = EBIT divided by assets, ROE = EBT divided by equity

Other valuation methods: Sustainable Growth Rate

Revenue growth and profitability ($\mathrm{ROX}=$ average
of ROS, ROA, ROE in \%)

Revenue growth (CAGR, in \%, segments)
ROS = EBT divided by sales, ROA = EBIT divided by assets, ROE = EBT divided by equity

Other valuation methods: Sustainable Growth Rate

$$
\begin{aligned}
& \mathbf{g}^{*}=(\text { Sales/Assets }) * \text { (Net Profit/Sales) * } \\
& \text { Earnings Retention Rate (1 }- \text { Norm of } \\
& \text { Dividends) * (Assets/Equity) } \\
& \mathbf{g}^{*}=\text { Earnings Retention Rate (1 - Norm of } \\
& \text { Dividends) * (Assets/Equity) * ROE (Return on } \\
& \text { Equity) }
\end{aligned}
$$

Other valuation methods: Altman Z-score, Index of Creditworthness

Public Co. (5 factor model):

Z5 public $=\left(\right.$ Net current assets/Total Assets)* ${ }^{*} 1,2+($ Net income (main activity)/Total assets)*3,3+(Accumulated Equity/Total assets)*1,4 + (Paid-up equity/Total liabilties)*0,6 + (Sales proceeds/Total assets)**0,999.
Norm - not lower than 2,71.
Non-public Co. (5 factor model):
Z5 non-public $=($ Net current assets/Total Assets)* $0,717+($ Retained earnings/Total assets) ${ }^{*} 0,84+$ (Operating profit/Total Assets) ${ }^{*} 3,107+$ (Shareholders' equity/Total liabilties) ${ }^{*} 0,42+\left(\right.$ Revenues/Total assets) ${ }^{*} 0,995$.
Norm - not lower than 1,23.
For all companies (2 factor model):
Z2 $=0,3877-1,0736^{\star}($ Current assets/Short-term liabilities $)+0,0579^{*}$ (Borrowings/Total assets).
Norm - not lower than $\mathbf{0}$.

