National Research University - Higher School of
Economics

Investment Project Management

Lecture 3. «Financial Mathematics. Accounting Investment Decision Criteria»

Accounting Investment Decision Criteria

Alongside with economically-based investment decision criterion there are accountingbased criterion which are extremely important and are used together with ratios mentioned before. It's perfectly impossible to consider the Project's profitability without having observed: Amortization/Depreciation, Working Capital demands, Average worth of fixed assets, etc. Following instruments facilitate to finally select the best project:
\rightarrow Depreciation/Amortization (4 methods)
\rightarrow AAR (Average Accounting Rate of Return)
\rightarrow DSCR (Debt Service Coverage Ratio)
\rightarrow Working Capital requirements based on assets and liabilities turnovers

Accounting Rate of Return

The Accounting Rate of Return (AAR) or Simple Rate of Return reflects the ratio of estimated accounting profit of a project to the average accounting investment amount made in the project.

The formula for calculation of the Accounting Rate of Return (AAR) is:

$$
\text { Accounting Rate of Return }(A R R)=\frac{\text { Average Accounting Profit }}{\text { Average Investment }}
$$

$$
A R R=\frac{\text { Net Income }}{\frac{1}{2} \times(\text { Investment Cost }- \text { Salvage Value })}
$$

Accounting Rate of Return
The Accounting Rate of Return (AAR) calculation:

Average Accounting Rate of							
Return	Y0	Y1	Y2	Y3	Y4	Y5	Average for the period
Total value of purchased/constructed assets (depreciated \& amortized) Average net income	5000	6775	10750	9149	7695	6309	7613

The AAR model does not include the Time Value of Money concept but it looks very pictorial for initial understanding of the Project profitability.

Abstract

\section*{Debt Coverage Ratio} The Debt Service Coverage Ratio (Debt Coverage Ratio, DCR) reflects the cash available for debt servicing to interest, principal and lease payments or the Project's ability to produce enough cash to cover its debt service total payments. The Total Cash Accrual which is adjusted from the Net Income plus all non-cash impairments plus Paid Interest should be larger than all debt repayments for the period.


```
The formula for calculation of the Debt Service Coverage Ratio (DCR) is:
DCR \(=(\) Annual Net Operating Income) \(/\) Debt services = (Net Income + Amortization/Depreciation + Interest Expense + other non-cash and discretionary items (similar as variating management bonuses)) / (Principal Repayment + Interest payments + Lease payments).
```


Debt Coverage Ratio The Debt Service Coverage Ratio calculation:

| Debt Service Coverage Ratio | Y0 | Y1 | Y2 | Y3 | Y4 | Y55 | Average
 for the
 period |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 3985 | -231 | 7441 | 9511 | 11802 |
| Total Cash Accrued | | | | | | | |
| Total Debt Service Requirements | | 5700 | 6840 | 7980 | 9120 | 10260 | |
| Debt Coverage Ratio (DCR) | | 0,70 | $-0,03$ | 0,93 | 1,04 | 1,15 | 0,76 |

The Debt Service Coverage Ratio shows the sufficiency of borrowing policy to Project's cash generating capability.
If DCR lays between

1,5 and 2,0 If $D C R<1,5-$ If $D C R>2,0-$
the Project has perfectly sufficient borrowings; the loans maturities should be extended; the loans maturities can be shortened.

Depreciation \& Amortization

The Depreciation (for material, tangible, fixed assets) and Amortization (for intangible assets) reflects the accounting decrease of assets' value with its allocation to certain reporting period which gives tax savings (on income tax). The concept of depreciation/amortization includes the acquisition cost, useful life term, Salvage (Residual) Value and the method of depreciation expense calculation (approved by tax authorities). The Salvage Value reflects the amount of depreciated/amortized asset value when it can be written-off. The Useful Life can be measured either in produced units or in years (according to established tax limitations).

Depreciation. Straight-line method

The Straight-line method considers that within Asset Useful Life period

 annual depreciation expense is equal to proportional even part of the difference between Acquisition cost and Residual value.| The formula for calculation of the Annual Straight-line depreciation expense is:$\text { Annual Straight }- \text { line Expense }=\frac{\text { Aquisition Cost }- \text { Salvage Value }}{\text { IIsoful Iifo }}$ | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| | | | | | | | |
| Amount (USD, thous) | 5000 | 5000 | 4775 | 4550 | 4325 | 4100 | 3875 |
| Year of going into operations (beginning of year) | Y1 | | | | | | |
| Depreciation method | Straightline | The most neutral and conservative method | | | | | |
| Estimated useful life (years) | 20 | | | | | | |
| Salvage (Residual) Value, (USD, thous.) | 500 | | | | | | |
| Depreciable Cost (USD, thous.) | 4500 | | | | | | |
| Yearly depreciation rate (\%) | 5,00\% | | | | | | |
| Yearly depreciation expense (USD, thous) | 225 | | 225 | 225 | 225 | 225 | 225 |

Depreciation. Declining-balance method

The Declining-balance method considers that the expense at the beginning is extremely larger than later. The salvage value is not considered in determining the annual depreciation. Depreciation ceases when either the salvage value or the end of the asset's useful life is reached.
The last year expense as a difference between the last year depreciated value and the salvage value.

The formula for calculation of the Annual Declining-balance depreciation expense is:
Annual Declining - balance expense
= Double Straight

- line annual expense rate applied to the Remaining Value of asset

Depreciation. Declining-balance method The Declining-balance calculation:

Amount (USD, thous)	2000	2000	1200	720	432	259
Year of going into operations	Y2					
Depreciation method	Declining balance	More aggressive method than Straight-line Depreciation/Amortization				
Estimated useful life (years)	5					
Salvage (Residual) Value, (USD, thous.)	200					
Depreciable Cost (USD, thous.)	1800					
Nominal Yearly depreciation rate (\% of FA value of previous year)	40,00\%		800	480	288	173
Yearly depreciation equivalent of annual rate (\%)	36,90\%		360	360	360	360

The formula for calculation of the Annual Declining-balance depreciation expense is:

Re - calculated to Straight Decl - Bal Depreciation Rate

$$
=1-\sqrt[n]{\frac{\text { Salvage Value }}{\text { Fixed Asset Cost }}}
$$

Depreciation. Sum-of-year-digits method

 The Sum-of-year-digits method. Under this method the annual depreciation is determined by multiplying the depreciable cost by a schedule of fractions.The formula for calculation of the Sum-of-year-digits depreciation expense is:

$$
\begin{aligned}
& \text { Sum }- \text { of }- \text { year }- \text { digit Depreciation Rate for period } i=r_{i} \\
& =\frac{\boldsymbol{n}-\boldsymbol{i}+\mathbf{1}}{\left(\frac{\left(\boldsymbol{n}^{2}+\boldsymbol{n}\right)}{2}\right)} \text {, where } n-\text { number of periods }
\end{aligned}
$$

Depreciation. Sum-of-year-digits method
 The Sum-of-year-digits method expense calculation:

Amount (USD, thous)	1000	Y0	Y1	Y2	Y3	Y4	Y5
Year of going into operations	Y3	1000	667	400	200	67	0
Amortization method	Sum-of-year-digits						
		Less aggressive method than Declining-Balance Derpeciation/Amortization					
Estimated useful life (years)	5						
Salvage (Residual) Value, (USD, thous.)	0						
Amortizable Cost (USD, thous.)	1000						
Number of period	i		1	2	3	4	5
Amortization rate for the period	Ri		1/3	4/15	1/5	2/15	1/15
Yearly amortization expense (USD, thous)	$\left.R \mathrm{i}=(\mathrm{n}-\mathrm{i}+1) /\left(\left(\mathrm{n}^{\wedge} 2+n\right) / 2\right)\right)$		333	267	200	133	67

Depreciation. Units-of-production method

The Units-of-production method expense is based on the share of total

 quantity of units (Useful Life) produced in the current period.$$
\begin{aligned}
& \text { The formula for calculation of the Units-of-Production depreciation expense is: } \\
& \qquad \text { Annual Units }- \text { of }- \text { Production Depreciation Expense } \\
& =\frac{\text { FA Cost }- \text { Salvage }}{\text { Estimated Total Production }} \times \text { Actually Produced Units }
\end{aligned}
$$

Working capital. Receivables planning

The Working capital represents the difference between current assets

 and liabilities which reflects the rate of Project's assets conversion to cash.

Each part of Working capital (accounts receivable, advances paid, advances received, inventories and goods for resale) should be recalculated for each period in 2 angles: the turnover and the balance.

Working capital

The Working capital represents how much cash received as revenues and borrowings are frozen in the current assets.

Morking Capita	YO	Y1	Y2	Y3	Y4	Y5
Inventories, USD thous.	0	271	116	513	646	788
Goods for resale, USD thous.	0	337	215	617	756	902
Advances paid, USD thous.	0	688	294	1300	1638	1996
Accounts receivable, USD thous.	0	740	311	1353	1688	2048
Accounts payable, USD thous.	0	462	293	822	997	1184
Total Working Capital	0	1574	643	2960	3730	4551
Changes in Working Capital, USD thous.		1574	-931	2317	770	820

The net changes of Working capital are to be added to cash position. Increase in Working capital means decrease of cash balance at the end of period.

Key Appraisal Ratios

Average Accounting Rate of Return (ARR) and the Debt Service Coverage Ratio (DCR) are used along with NPV, IRR, PP, DPP, ANPV and DPI as the key ratios for the initial selection and the current control of the Projects.
The net changes of Working capital, calculated depreciation/amortization, calculated balance of all current assets and liabilities allow to finalize Company's/Project's balance sheet and Cash flow statement.

BALANCE SHEET

ASSETS

 LIABILITIES

 LIABILITIES}What the bank owns
(Branch buildings, computers, cash in their tills, government bonds, other financial assets etc)
What people owe to the bank (Loans, mortgages, overdrafts etc)

Everything the bank owes to other people (or other banks)

