National Research University - Higher School of
Economics

Investment Project Management

Lecture 2. «Financial Mathematics. Principles»

What the financial math does stand on?

The only hypothesis lays at the basement of modern financial mathematics: "The dollar TODAY is worth more!"

This principle named "The Time Value of Money" is used for explanation of Present Value phenomenon and all other existing valuation models.

What the financial math does stand on?

his

TIME VALUE OF MONEY

What the financial math does stand on?

Another disparity which generates various math models - it's a conflict between the 'Price' and the 'Value'.

PERCENT OF BUYERS WHO WILL VIEW PROPERTY

What the financial math does stand on?

The key idea is that today's dollar will cost tomorrow more as far as it can be invested today and can generate some additional cash till tomorrow. Consequently, there's today's and tomorrow's value of a dollar. We can say "PRESENT VALUE" and "FUTURE VALUE".

What the financial math does stand on?

The process of generating of FUTURE VALUE by investing money is named COMPOUNDING.

The more frequent are the acts of investing the higher amount of the additional value is generated.

What the financial math does stand on?

The process of generating of FUTURE VALUE by investing money is named COMPOUNDING.

Timmy's problem			The formula for calculation of the number of periods of reinvestment when the Present Value is turning to Future Value with given interest rate is:
How to calculate quickly the number of re-investment periods needed for turning $\$ 10^{\prime} 000$ to $\$ 110^{\prime} 000$ when the interest rate is given?			
Interest (Compounding) Rate	10\%		$n=$
Present Value	10000		
Future Value	110000		
Number of periods needed	?		
Number of periods needed	25,16		

What the financial math does stand on?

The opposite task: to find out the Present Value when we know the Future Value. This process is named DISCOUNTING.

Sheila's problem

How to calculate quickly the amount to be invested to obtain $\$ 11^{\prime} 000$ in 2 years when the interest rate is given?

Interest (Compounding) Rate	10\%	The formula for calculation of the Present
Present Value	?	Value (PV) with given Future Value (FV),
Future Value	11000	number of periods (i) and interest rate (r) is:
Number of periods	2	$P V=\frac{F V}{(1+r)^{t}}$
Amount to be invested	9090,91	$(1+r)^{t}$

What the financial math does stand on?

Let's return to a basic category of financial mathematics the PRESENT VALUE. How much do tomorrow's dollars cost today for those who prefer spend money immediately and those who prefer to keep them for a long?

What the financial math does stand on?

The Ant and the Grasshopper

The Ant is idustrous guy and he doesn't like to spend money.
The Grasshopper is a prodigal (risky spender) and she loves to throw her money arounı The Ant deposits his money at the bank.
The Grasshopper borrows any amount of money at the bank at any moment.

The rates on loans and deposits are equal	10\%		
The amount to be invested	100		
The investment rate of return	15\%		
	Yo	Y1	Total
Ant's actions	-100	115	15
Extra-value received in comparison with bank deposit	4,55		5,00
Grasshoppers's actions			
Bank's loan (with interest included)	104,55	-115,00	
Investing	-100,00	115,00	
Spending immediately	4,55		

What are the Goals of economic analysis?

OR

?

Increase in the Company's Value generates the positive effect for the stakeholders. Increase in the Profits can mean: 1) growth of this year profit to the prejudice of further years profits; 2) growth of the profit without dividends repayment; 3) various technical methods of profit calculation. That's why the key goal of the business should be an increase of Company's Value.

Valuation \neq Accounting reports analysis

The valuation is based on cash flows. Accounting report analysis is based on revenues, costs and profit/income.

Various definitions

Valuation - is finished process: "The company's valuation is USD 1bn". Evaluation - is a progressing process of examine of physical capability or people characteristics. After something is evaluated, a valuation is often determined. Valuation is an official procedure of examine of the market price. Appraisals are only intended as a guide to pricing.

Profits: This is the money that a person or a company gets after they pay for the costs. Interest: If I put money in the bank, they give me interest. If I borrow money, I have to give back the money, and interest. Benefits: This has two meanings in English. 1: Benefits is money that the government pays to people who are ill or without a job. 2: Benefits is the extra things you get with your job. For example, If I work for a Cinema, I get paid by them, but as part of my benefits, they might give me free film tickets. Revenue: This is the money that a company takes from sales. It is different from profits because revenue is all the money a company gets, but they have to pay costs like rent and raw materials. Revenues (=sales proceeds) is used for all regular money inflows coming from main company's business activity. The gains from securities (and other financial and investment actions) are not included to Revenues. Gains are inflows from peripheral activities. Income - mainly, the net of revenues and expenses for the current period. Retained earnings $=$ Income (of current period) + net profit of previous periods - paid dividends.

Three types of future cash flow: annuity, perpetuity and variable

Annuity

An annuity is a regular continuing payment with a fixed total annual amount limited for definite numbers of periods.

Ordinary Annuity: Payments are required at the end of each period. For example, straight bonds usually pay coupon payments at the end of every six months until the bond's maturity date.

Annuity Due: Payments are required at the beginning of each period. Rent is an example of annuity due. You are usually required to pay rent when you first move in at the beginning of the month and then on the first of each month
 thereafter.

Annuity: Constant \& Growing

Annuity

$$
F V_{\text {Ordinary Annuity }}=C F \times\left[\frac{(1+r)^{n}-1}{r}\right]
$$

Future Value of an Ordinary Annuity $=\overline{\$ 5525.64}$

$$
\begin{aligned}
& F V_{\text {Annuity Due }}=C F \times \\
& {\left[\frac{(1+r)^{n}-1}{r}\right] \times(1+r)}
\end{aligned}
$$

$P V_{\text {Ordinary Annuity }}=C F \times\left[\frac{1-(1+r)^{-n}}{r}\right]$

Present Value of an
Ordinary Annuity $=\$ 4329.48$

CF = Cash flow per period
r = interest rate
$\mathrm{n}=$ number of payments

$\frac{\$ 1000}{(1.05)^{2}}=\$ 907.03$
 Investopedia.com for the graphs
$\frac{\$ 1000}{(1.05)^{3}}=\$ 863.84$

$\$ 1000=\$ 822.70$
$(1.05)^{4}$
an Annuity Due = \$4545.95

$$
\begin{gathered}
P V_{\text {Annuity Due }}=C F \times \\
{\left[\frac{1-(1+r)^{-n}}{r}\right] \times(1+r)}
\end{gathered}
$$

Perpetuity

An perpetuity is a regular continuing payment with a fixed total annual amount non-limited for indefinite future.

Samples of Perpetuity:

- US Treasury bonds [T-bonds] issued for 10-30 years periods have up to 360 times of repayments - How to calculate NPV physically? It's almost perpetual repayments.
- Do we have something really perpetual in the economy? - A super exotic security: British Consolidated Annuities (officially termless bonds issued by the Great Britain Government in 1752-1927 named "Consols". The latest yield level was established by Winston Churchill's Government in 1927 in amount of $2,5-4 \%$ p.a.).

Perpetuity

No growth perpetuity

How much do you need to invest today in order to receive yearly $10 \$$ if the rate is $10 \% ?$

Discount Rate	10\%				
Time	Cash Flow	Discount Factor	PV	Cumulative PV	
1	10	0,9091	9,09	9,09	The formula for calculation of the Present Value of infinite equal annual payments is:
2	10	0,8264	8,26	17,36	
3	10	0,7513	7,51	24,87	
4	10	0,6830	6,83	31,70	
5	10	0,6209	6,21	37,91	
\ldots					$P V_{0}=$
50	10	0,0085	0,09	99,15	
...					
100	10	0,0001	0,00	99,99	
...					
TOTAL PV (The Sum of the Sequence)				100	

Perpetuity

Perpetuity With Growth

How much do you need to invest today in order to receive yearly 10\$ plus 5\% Growth if the rate is 10% ?

Discount Rate	10\%	Growth Rate		5\%	Initial Payment	\$10
Time	Cash Flow	Discount Factor	PV	Cumulative PV		
1	10,00	0,9091	9,09	9,09		
2	10,50	0,8264	8,68	17,77	The form	alculation of
3	11,03	0,7513	8,28	26,05		
4	11,58	0,6830	7,91	33,96		
5	12,16	0,6209	7,55	41,51		C
\ldots					D	
27	35,56	0,0763	2,71	143,04	$P V$	
28	37,33	0,0693	2,59	145,63		
29	39,20	0,0630	2,47	148,10		
30	41,16	0,0573	2,36	150,46		
?						
TOTAL PV (The Sum of the Sequence)				200		

Perpetuity

British Consolidated Annuities

What is a Present value of the Consol with amount $10^{\prime} 000$ GBP and interest rate 4\% p.a.? Discount rate is 10%.

Discount Rate	10\%	Interest rate	4\%		nsol amount	$£ 10000$	
Time	Cash Flow	Discount Factor	PV	Cumulative PV			
1	£400	0,9091	£363,64	£ 363,64	The generic formula for calculation of the Present Value of infinite equal annual payments is (if no growth, $\mathbf{g}=\mathbf{0}$):		
2	£400	0,8264	£330,58	£694,21			
3	£400	0,7513	£300,53	£994,74	$P V_{0}=\frac{C F}{r-g} \times\left[1-\frac{(1+g)^{n}}{(1+r)^{n}}\right]$		
4	£400	0,6830	£273,21	£1267,95			
5	£400	0,6209	£248,37	£1516,31			
...							
TOTAL PV (The Sum of the Sequence)				$£ 4000$			

